Platt's 19th Annual Coal Properties And Investment Conference

Export Growth, New International Markets, and Regulatory Challenges

> Palm Beach Gardens, Florida March 15 – 16, 2011

> > Alan K. Stagg

Stagg Resource Consultants, Inc.

Regional Coal Quality – Technical Issues Impacting Coal Finance And Investment

Palm Beach Gardens, Florida March 16, 2011

Alan K. Stagg

Stagg Resource Consultants, Inc.

Stating the obvious –

Both Lenders and Investors Have Vested Interests In A Coal Mine's Performance

Overview

Performance is judged against expectations.

One of the expectations is that the coal produced will satisfy the requirements for its use.

Technical (quality) issues are key to satisfying such requirements.

Overview

Examples - (First)

- Unanticipated change in ash fusion temperature creates slagging in boilers.
- Utility requires corrective/remedial measures.
- Costs producer money.

Examples - (Second)

 Unanticipated change in fluidity reduces coke oven performance.
Coke maker requires corrective/remedial measures.
Costs producer money.

Overview

Examples - (Third)

- Unanticipated change in emission levels of (insert name of element) occurs by regulatory action.
- Renders coal unsuitable/too costly for use.
- Costs producer money.

Examples - (Fourth)

Any of the above or any other similar occurrence causes the loss of a sales agreement.

Costs producer lots of money.

Impact Can Be Contractual or Regulatory

Unanticipated

Key Result –

Costs Producer Money

Further Key Result –

Costs Lender/Investor Money

What To Do?

DUE DILIGENCE

Presentation Outline

Understanding Coal

Key Quality Issues

Regional Overview

Notable Current Concerns

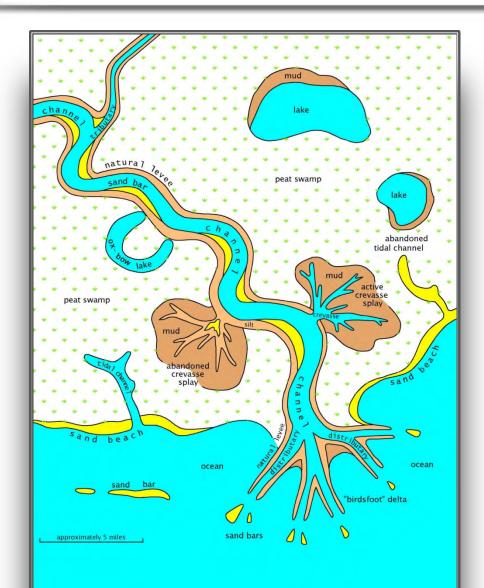
Risk Avoidance

Coal often believed to be a relatively simple and homogeneous material.

NOT SO!

Consider its origin –

A combustible rock comprised of metamorphosed plant remains and formed in swamps



Mississippi River Delta

Idealized Fluvial System

10

Location within depositional system influences coal quality

Nature of plant material influences coal quality

What Does This Mean?

From 30,000 Feet –

All Coal Beds In A Region Do Not Have The Same Quality

From 10,000 Feet –

Any Given Coal Bed In A Region Does Not Have The Same Quality

From 1,000 Feet –

Any Given Coal Bed On A Property May Not Have The Same Quality

From 100 Feet –

Any Given Coal Bed In A Mine May Not Have The Same Quality

Two Key Points

Quality Can Vary Horizontally

Quality Can Vary Vertically

Thermal Coal – Basics

≻ Ash

> Sulfur

> Heat

Volatile Matter

Fixed Carbon

Thermal Coal – Physical

Hardgrove Grindability

> Ash Fusion Temperature

Thermal Coal – Ash Chemistry

> Sodium

> Chlorine

> Mercury

> Selenium

Metallurgical Coal – Basics

- > Moisture
- ≻ Ash
- > Sulfur
- Volatile Matter
- Fixed Carbon

Metallurgical Coal – Physical

- >Free Swelling Index
- > Fluidity
- Reflectance
- Dilatation

Metallurgical Coal – Physical

Oxidation

>Maceral Composition

Metallurgical Coal – Ash Chemistry

> Phosphorous

> Chlorine

> Sodium

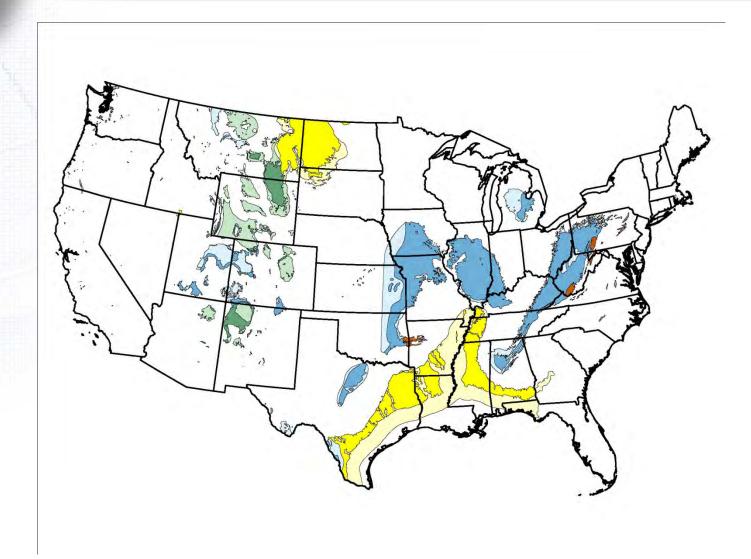
Regional Overview

Regional Overview

Coal is widely distributed in U.S.

Deposits have been identified in 36 of the 48 contiguous states and in Alaska.

During the past several decades, production has been reported in 27 states.



Production encompasses entire spectrum of coal rank from lignite to anthracite.

Coal-producing areas in the U.S. subdivided on the basis of geology and geography into a variety of provinces, regions, and fields.

United States Coal Fields

Principal Regions - Eastern U.S.

Eastern Province

Appalachian Region

Interior Province

- Eastern Region (Illinois Basin)
- Western Region

Principal Regions - Eastern U.S.

Gulf Coast Lignite Province

Texas Region

Principal Regions - Western U.S.

Northern Great Plains Province

- Fort Union Region
- Powder River Region

Rocky Mountain Province

- Green River Region
- Uinta Region
- San Juan River Region

Principal Types and Uses

Northern Appalachian Region

- Bituminous
- Generally high sulfur
- Thermal coal predominantly
- Modest metallurgical production

Principal Types and Uses

Central Appalachian Region

- Bituminous
- Generally low to medium sulfur
- Thermal coal predominates, but
- High quality metallurgical production is significant

Principal Types and Uses

Southern Appalachian Region

- Bituminous
- Generally low to medium sulfur
- Thermal coal predominates
- Has metallurgical production and potential

Principal Types and Uses

Eastern Region (Illinois Basin)

- Bituminous
- Generally high sulfur
- Thermal coal
- Has produced metallurgical coal but no longer competitive quality

Principal Types and Uses

Western Region (Arkansas and Oklahoma)

- Bituminous
- Generally low sulfur
- Contains high quality metallurgical coal but difficult mining conditions
- May develop production

Principal Types and Uses

Western Region (Arkansas and Oklahoma)

- Bituminous
- Generally low sulfur
- Contains high quality metallurgical coal but difficult mining conditions
- May develop production

Principal Types and Uses

- Texas Region
 - Lignite
 - Thermal
 - Mine mouth generating stations

Principal Types and Uses

Fort Union Region

- Lignite
- Thermal
- Mine mouth generating stations

Principal Types and Uses

Powder River Region

- Subbituminous
- Generally extremely low sulfur
- Thermal

Principal Types and Uses

Rocky Mountain Province

- Subbituminous to bituminous
- Generally low sulfur
- Thermal

Examples of

Notable Concerns

Mercury

Compliance will be required under the 2005 Clean Air Mercury Rule

New standards expected to be issued this week

Mercury (continued)

Mercury content of coal varies widely across geographic regions

Content is related to relative abundance of other elements such as chlorine and sulfur

Mercury (continued)

Association with other elements can influence mercury capture for various emission control technologies

♦Selenium

Concerns date to 1970's from fish kill resulting from coal ash entering lake in North Carolina

Causes reproductive failure and physical deformities in aquatic wildlife

Selenium (continued)

Apparent relative increases observed in streams in NAPP and CAPP

Clean-ups mandated and increased regulatory controls inplace in Mud River watershed in West Virginia

Selenium (continued)

- Showing up downstream from coal ash disposal site along Ohio River
- Increased concentrations noted in water at site of ash disposal discharge at Kingston generating station

Selenium (continued)

Higher than average concentrations have been found in coal beds in a defined stratigraphic interval in NAPP and CAPP

Uncertain whether source in streams is from overburden or coal beds or both

Selenium (continued)

- Affecting discharge standards
- Increasing cost of regulatory compliance for some coal mine permits

Know Potential Quality Issues and Concerns

> For region

> For property

For markets to be served

Emphasize quality during due diligence

Review analytic data to the same extent as reserve data

If insufficient data, require additional testing

Rationalize Contract Specifications With Coal Quality

Compare specs with analyses

Investigate potential for quality excursions

Address in project economics

Incorporate risk assessment

Can cost be quantified

Alan K. Stagg, PG, AIMA Stagg Resource Consultants, Inc. 5457 Big Tyler Road Cross Lanes, WV 25313

(304) 776-6660

astagg@staggconsultants.com

